Bootstrapping using parPerm

parperm_boot(x.mat.boot = xtx, y.boot = ymat, columns.boot = 2:3,
  split.boot = 101, num_perms.boot = 5, boots = 5)

Arguments

boots

Number of desired bootstraps

x.mat

The desired x matrix that contains all the characteristics data/predictor variables; the matrix should contain the desired column user intends completing the permutation on.

y

The desired preprocessed neuroimaging data, with a mask or not.

columns

A statement indicating which characteristic/predictor we want analyzed, for multiple categories select the proper columns

split

A value that allows user to finely split the processing task to allow for error checking.

num_perms

User defined value for number of desired permutations

Value

The desired results post-bootstrap

Examples

#library(parallel) #lirary(doparallel) #library(parPerm) #cores <- detectCores() #cl <- makeCluster(cores[1]-1) #not to overload your computer #registerDoParallel(cl) #boooooot <- parperm_boot(x.mat.boot = xtx, y.boot = ymat, columns.boot = 2:3, split.boot = 101, num_perms.boot = 5, boots = 5)